Online tracking of multiple objects using WiSARD
نویسندگان
چکیده
This paper evaluates the WiSARD weightless model as a classification system on the problem of tracking multiple objects in realtime. Exploring the structure of this model, the proposed solution applies a re-learning stage in order to avoid interferences caused by background noise or variations in the target shape. Once the tracker finds a target at the first time, it applies only local searches around the neighbourhood in order to have fast response. This approach is evaluated through some experiments on real-world video data.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملTracking deformable objects with WISARD networks
In this paper, we investigate a new approach based on WISARD Neural Network for the tracking of non-rigid deformable object. The proposed approach allows deploying an on–line training on the texture and shape features of the object, to adapt in real–time to changes, and to partially cope with occlusions. Moreover, the use of parallel classificators trained on the same set of images allows track...
متن کاملMultiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملParallel WiSARD object tracker: a ram-based tracking system
This paper proposes the Parallel WiSARD Object Tracker (PWOT), a new object tracker based on the WiSARD weightless neural network that is robust against quantization errors. Object tracking in video is an important and challenging task in many applications. Difficulties can arise due to weather conditions, target trajectory and appearance, occlusions, lighting conditions and noise. Tracking is ...
متن کامل